Affine structures on abelian Lie Groups

نویسنده

  • Elisabeth Remm
چکیده

The Nagano-Yagi-Goldmann theorem states that on the torus T, every affine (or projective) structure is invariant or is constructed on the basis of some Goldmann rings [N-Y]. It shows the interest to study the invariant affine structure on the torus T or on abelian Lie groups. Recently, the works of Kim [K] and Dekempe-Ongenae [D-O] precise the number of non equivalent invariant affine structure on a abelian Lie group in the case where these structures are complete. In this paper we propose a study of complete and non complete affine structure on abelian Lie groups based on the geometry of the algebraic variety of finite dimensional associative algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Abelian Complex Structures on Solvable Lie Algebras

We obtain a characterization of the Lie algebras admitting abelian complex structures in terms of certain affine Lie algebras aff(A), where A is a commutative algebra.

متن کامل

Pseudoframe multiresolution structure on abelian locally compact groups

‎Let $G$ be a locally compact abelian group‎. ‎The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$‎. ‎Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level‎. ‎Also‎, ‎the construction of affine frames for $L^2(G)$ bas...

متن کامل

Novikov Structures on Solvable Lie Algebras

We study Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov structure must be solvable. Conversely we present an example of a nilpotent 2-step solvable Lie algebra without any Novikov structure. We construct Novikov structures on certain Lie algebras via classical r-matrices and via extensions. In the latter case we lift No...

متن کامل

Classification of abelian complex structures on 6-dimensional Lie algebras

Let g be a Lie algebra, J an endomorphism of g such that J = −I , and let g be the ieigenspace of J in g := g ⊗R C. When g is a complex subalgebra we say that J is integrable, when g is abelian we say that J is abelian and when g is a complex ideal we say that J is bi-invariant. We note that a complex structure on a Lie algebra cannot be both abelian and biinvariant, unless the Lie bracket is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003